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AN Preface

The linear regression model is one of the most widely used quantit-
ative tools of the'applied social sciences and many of the physical
sciences. The most common used techniques in this kind of model, is the
ordinary least squares because of its low computational costs, its in-
tuitive plausibility in a wide variety of circumstanggs, and its support
by a broad and sophisticated boéy of statistical inference. The least
squares toél could be used on 3-basic levels:

1. It can be applied mechanically, or descriptively, as a means of
curve fitting.

2. It enables us to perform hypothesis testing.

3. ;t gives a reasonable way of understanding complex physical
and social phenomena.

Let us now denote the regression model by

Y=Xg + € , where
A

"X -1is an N x k + 1 matrix,

- g -1is an k + 1 x 1 vector,

S ¢ - is an n x 1 vector, and
rg
i Y - is an N x 1 vector,

- The assumptions for the least square method are:

r

.:—l_.;j J. - ,.',' ‘

1. E(C) = 0 ioe.

The expected value of the error term ¢ is zero

2. E(c - E(c))z = 021: i.e.

2
4
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All error terms have constance variance 02 and they are independent.

NN 3. The X matrix is nonstochastic with rank p(x) = k + 1 i.e.

w -l

A s

none of the columns of x is a linear combination of other columns.
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The estimators for the coefficients vector g which are given as 8:

~ A I | '
B=(xX) " XY

-~ These estimators have the properties:

1. a is a linear function of Y.

2. E(8) 8 i.e. unbiasedness

~ an A A Al 2 =1
3. V(8) = E(g - E(B) (B - E(B) =0 (XX)
and the estimate for 02 is given by S2 where:

§2 _ Error sum of squares
T N-(k + 1)

4.‘>The basié and most important assumption for that model is the assump-
tion of normality. The confidence interval and testing procedures are
all based on the ﬂormality:assumption. It is true that normality assump-
tiop is an important case and that it can sometimes be justified by the
centrai'limit,theorgm, but it is equally true that the assumption is made
in many cases in which it does not really hold. There are two basic
questions arising in thige case:

1) How serious are the consequences?

2) To what extent is'a test "robust"?

i.e. To what extent is a test insensitive to departures from the assump-
tion under which it is derived?

In that concern appears two basic issués: - First: Tests which con-
cern first moments (such as t-tests for elements of the parameter vector
g8 of the e*pectation Xg 1in the standard linear model, are relatively in-
sensitive to departures from normality.

Second: Tests concerning second moments such as F-tests are much .
less robust (see Kendall and Stuart 1967, pp. 455). Thus our search here
will be bascially for a robust technique that could be applied for estimat-

ing parameters of the linear model Y = X8 + €

L M L el e a ata e




Foreward

During the course 'Linear Statistical Models" given in AFIT, I

?{f started to be interested in the regression models due to theif wide use
in managemenf, managemépt sciences, and social sciencgs. These models
.- are successfully used in real lifé applica£ions basically because of
the sound understanding of both the undeplying theory and the practical
: applications themselves.

b Robust linear regression model is an area of greater intefest since

in many sets of data, there are fairly large percentages of "Outliers'

'due to heavy tailed models of errors in collecting and recording. Due
to the fact that these Qutliers have an ﬁnusually great influence on

- "]least squares" estimatoﬁs'(or generalized least square estimators),
robust procedure attempts to modify thése schemes. During a course by
" Dr. A. H. Moore, Professor in the Department of Mathematics, Air Force
Institute of Technology, School of Engineering in robust statistics, I
became interested in the area of robust regression. After talking to
Dr. Moore about my interest in robust regression, we decided to make

a search in robust multiple linear regression.

I wish to express my thanks to Dr. A. H. Moore, my thesis advisor,
for his valuable remarks, directions for search and his aid in the |
accomplishment of my thesis. I also wish to thank Dr. J. P. Cain, my
reader, to whom I am especially indebted for learning a lot about
multiple linear regression.

Finally, I owe my wife, Azza, my son Mohamed and my lovely American

daughter, Dina, a great debt of love and best wishes for their patiehce

and encouragement during my study at AFIT.

AHMED MOHAMED M. SULTAN

vi




List of Tables

Page

TADLE Lseeeersnnneennnnneennnnnsessnnsesssnnneensneeensnnens 38
Table A-1..............:.................................... 39
TADLE A2 enenenenenneseneneacnsesnssosensnsesssssensnnnns 40
TADLE A=3eueerenenenronenenonesencncnssoscesnssanasnsenennens 41
TB1E Acdernesee s ene e e s e s e e e e e e e e e e e e e e renns 42
TADLE Blerenneneenenensonenesnenneneaneneensansananeenans 43
TADLE B2t v evevnsnsnsnennnnnnenenesssnsseneseasessnesennnns 44
P LT 45
TADLE B eneneneesanennnsossesesnsocnenesnsssssasssnnanns 46
TABLE Bo5.uuuuuenreereeereaeeneeensansesnssssssssenenssanons 47
Table B=6..ccvesevsossscasasesnessosscssossoccncooososcancncs 48

Table B-7-.-o-o-oo.-oooooo-.o-n..oo-.o..-o.oonoooooo--ooooo. 49

Table B-Bo..oooo.oo.ocauc--aooo.-alooo.oo..--c..ocuo.oo-.oc. 50
AY

51

TAble B—0....veececersasceensvssaccsorsasacnssscscnosassacanss
TADLE B10+.euenenenenonorncnsnenennsesasaesnnsesenennnnsnos 52
TAbLe Bo1l.ueennuernneeonneronaronceonsoennsansessensonaons 53
TADLE B=12. e vuuneeennneesnnnnsessnsnseesssnnsessnnnessnnnns 54

Table B-13a0000000000-00-00o.u-..o.oo.....oo-.o-oo-'o-n.oo-oo 55

vii




LAt i e

Abstract

An extensive Monte Carlo analysis is conducted to determine the
p;rformance of robust linear regression techniques with and without
outliers. Thirteen methods of regression are compared including least
squares and minimum absolute deviation. The classical robust techniques
of Huber, Hampel were studied and robust techniques using the Q-statistic
as a discriminant were introduced.

The model studied contained eleven variables with 27 observations.
The error distributions considered were uniformly normally, double
exponentially distributed.
Least squares gave the best fit without outliers. In the presence

of gross outliers a rejection of outliers technique gave the best fit.
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I, Introduction

Problem Statement

Regression analysis is a statistiéal technique for expressing the
relationship between variables in a mathematical form. Moreover it is
considered one of the most widely:used'statistical techniques due to its
large applications in almost every field. An earlier search has been
done by James E. Fianagaﬁ GOR/81-D to examine the use of Lp-norms and
distance estimation. Due to computer and algorithm limitations it was

only possible to examine the following linear models:

go'+,8 X, + ¢

y 1M

and

BO'+ 81 X1 + 82 X, + ¢

y 2

However, the application envisioned is to try to improve the '"pre-

" dictive" operations and maintenance cost model (ALPOS model) developed

for Air Force Avionics Laboratory Systems Evaluation group. Howevér,
their linear model used 20 independent variables. The earlier search
demonstrated the feasibility of a generaiized approach'fo the regression
problem but was unable to handlé many independent variables.

This thesis envisions using a different approach (Adaptive) so that

many independent varialiles (up to 100) can generally be handled.

Verification of the model can be made by comparing its prediction

capability with the prediction capability of the ALPOS_model.

Review of Applicable Literature

. The possible existence of non-normal error distribution having
infinite variance or with large tails, has led the statistician to a

search for estimators that are more 'robust' than least squares (L.S.)
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estimators. By 'robust' here one means a reasonably efficient estimator
regardless of the form of the underlying error distribution. When the
errors are i.i.d., normal random variables, L.S. estimator are efficient,
and so, the search is for estimators that are not much worse than L.S.
when the errors are normally distributed but are really better for non-
normal errors.

A large number of estimators, were suggested in a considerable body
of literature. For example, the surveys of Huber (Ref 43:1041) in which
a selective review on robust statistics, centering on estimates of loca-
tion and extending into other estimation and testing problems. In 1973
Huber (Ref 45:799) defined the maximum likelihood type robust estimates
of regression, and investigated their asymptotic properties both theor-
tically and empirically. Koenker and Bassett (Ref 55:33) introduced a
new class of linear model called "regression quantiles", which is a
simple minimization problem yielding the ordinary sample quantiles in
location model. This model generalizes naturally to the linear model.

The estimator which minimizes the sum of absolute residuals is an import-

‘ant case. Estimators were suggested, which have comparable efficiency

to least squuies for normal linear model while substantially out-perform-
ing the least squares estimator over a wide class of non-normal error
distributions. Another study was made by McKean, J and Hettmansperger,
Tﬁomas for the general linear model based on one step R-estimates

(Ref 60:571). One step iterations based on a second derivative approxima-
tion to the surface was proposed. These estimates, can be obtained quick-
ly from initial estimates. Further the analysis resulting from these
estimates is asymptotically equivalent to the minimum dispersion analysis.

Thus it can be recommended for large data sets. In addition Maddala

P F P R SO S W W Y
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(Ref 57:308) surveyed the work done by Huber and Anscombe for minimizing
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with different definition of f for each of them. Then a discussion.of

least absolute deviation minimization was discussed. Also a relevant

b
b
%ﬁ

part of Mosteller (Ref 64:105) discussed different suggestions for solu-

tion of non-normal error linear models. Finally,-Narula (Ref 66:185)
suggested the minimization of the sum of relative errors (MSRE) as an
alternative to least squares. The problem is formulated as a linear

‘programming problem and a solution procedure is given.

Model Selected

The'model selected is

y = 80 + B8, X, + ———————— +B8X + €

O for the problem of property valuation. The objective is to predict y,

the sale price of a home for known value, of the variables X, through

1

x11 which represent (taxes, number of baths, lot size, ---- , lot size,

number of firepiaces). The data, 27 observations on variables (y1 Xl,
—— x11) were obtained from Multiple Listing, Vol. 87 for area 12 (Erie,

PA).

Choice of Error Models

In order to see the behavior of the proposed adaptive technique, it

was necessary to add different error distributions to an exact fit of

data. The way it is done here is through getting an estimation for the
5 value of 8 as ao‘and generating exact values for the y by multiplying
§ X by Bs*
F y=X8,
".
¢ The choice of non-normal error distribution is basically dependent on the
L—\
-
i

3
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tail length of the distribution. For the uniform case, it has smaller
tails, while for the double exponential it has thicker tails relative

to the normal distribution.
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II. Methods of Estimation
As in the general decision problem, there is no single, best pro-
cedure for estimating the parameters of a distribution. In a given case
under study, it may be advisable to use the method of moments, Bayes

estimates, minimax estimates, or maximum likelihood estimates.

Mefhods of Moments

This method is oldest method of estimating parameters, which was
devised by K. Pearson about 1894. If there are K parameters to be

estimated, the method consists of expressing the first K population mom-

~ents in terms of these K-parameters; equating them to the corresponding

sample moments and taking the solutions of the resulting equations as

~ estimates of the parameters. The method usually leads to relativély

simple estimates.

The estimates obtained in this way are clearly functions of the
sample moments. Since the sample moments are consistent estimates of
population moménts, the parameter estimates wili generally be consistent;

Although the asymptotic efficiency of estimates obtained by the
method of moments is often less than 1, such estimates may conveniently
be used as first approximation from which more efficient estimates may

be obtained by other means.

Bayes Estimates

In the methods of point estimation the assumption is that the ran-
dom sample came from density €(.;¢), where the function €(.;¢) is assumed
to be known. Moreover ¢ was some fixed, though unknown, point. 1In some
real world situations which the density f(:;¢) represents, there is often

additional information about ¢ i.e. ¢ itself may act as a random variable

B N _—— -
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for which one could postulate a realistic density function.

It has been seen that the Bayes action for a given observation Z = z
is that which minimizes the expected value of the loss with respect to
the posterior distribution. This expected loss, assuming a quadratic
loss function (§ - a)z, is .

2 2
E, (6 - a) = J; (6 - a)“dH(s)
where H(¢) is the distribution fynction for the posterior distribution.
Since this expected loss is a second moment of a distpibution, it is

minimized when taken about the mean of the distribution. That is, the

minimizing action and hence the Bayes estimate of ¢ 1is

Ey (¢) = j: ¢dH (o)

Maximum Likelihood Estimates

We shall suppose first that the population of interest is discrete,
so that it is meaningful to speak of the probability that X = y, where
X denotes a sample (Xl""’xn) and x a possible realizat;on (xl""’xn)'
This probability that X = yx depends cn ¥, of course, but it also depends
.on thg state of nature ¢ which governs. As a function of ¢ for given
x» it is called the likelihood function.

L(¢) = PO(X = x)

* Thinking of a state of nature as a possible 'explanation" of ob-
served data, the maximum likelihood considers the "best" explanation to
be the state of nature 3 that maximizes the likelihood function - that
maximizes the probability of getting what was actually observed. A max-
imum likelihood procedure is then one that is best when the state of nat-

ure is the maximum likelihood state, ¢. This is determined from the loss

function as the action that minimizes the loss function as a function of
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¢ and a (i.e. the loss resulting from an action a when the state of
nature is take as ¢).

A

The best explanation ¢ of a given observation X = y depends on‘x,
and so defines a function of y or a statistic. The rule that says take
the action that minimizes L(;, a), where & is the loss function, assigns
this action to the x that leads to ;, and so the maximum likelihood
principle defines a decision function, called the maximum likelihood
decision function.

Thus a maximum likelihood estimate is a value of ¢ that maximizes
the likelihood function. If ¢ is multidimensional, so is ;, and the

components are said to be joint maximum likelihood estimates of the

corresponding components of ¢.

Some Other Techniques

A brief mention will be made in this port of certain other techni-
ques for obtaining estimators involving somewhat more mathematical pre-
paration than has been provided or assumed. As in general, a decision
procedure ca2n be reélaced by one based on a sufficient statistic, so in
estimating a parameter an estimator can be replaced by a function of a
sufficient statistic without deterioration of the.risk. In particular,
given an unbiased estimate U of the parameter h(¢), an unbiased estimate
based on the sufficient statistic T can be constructed whose variance is
not greater than that of U. In some instances the method yields an un-
biased estimate of mihimum.variance.

Given the statistic U, fheﬁ. consider the function

g (t) = E (U|T = t)

If T is sufficient, the conditional distribution of X, and therefore that

. .
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of the statistic U, are independent of the state ¢. The function g(t)
really depends, then, only on t, as the notation implies. It defines a
statistic

v= g(T),

Whose mean is the same as that of U:

E(V) = E(E(U|T))

E(U)

n

Consequently, if U is an unbiased estimate of h($), se is V.

The variance of U can be expressed as follows:

var(U) = E((U - E(V))?)

var (V) + E((U = V)2) + 2E ((U = V) (V = E(v)))

The assertion that var (U) >var (V) will be established as soon as it is
shown that the cross product term vanishes. So, Consider
E((U - V) (V - E(V))) =Z E((U - V) (V=-EV))| T=1t) D F.(t), where

FT(t) is the distribution function of T. Now,
E(V-U|T=t)=E (V|T = t) -E (U|T = t)

git) - g(t)

0

and

E ((U-V) (V-EWV)|T =1t)

E ((U-V) (g(t) - h(¢))]|T = t)

(g(t) - h(6)) E(U - V|T = t)

=0
Thus the above integral vanishes, and Var (u) > Var (V). The variance
of V is actually smaller if U does not depend on the data through the
valuc of T only, and so one can do better using V than using U. Clearly,
any estimator that is unbiased and has a srcaller variance than does g(T)

would also have to be a function of the su‘ficient statistic T (since

) " . PO U SN - PPy P P T T ) A Aol




otherwise the preceding technique would yield a function of T that does
at least as well). But if there is such a function, K(T), also unbiased

in estimating h(¢), then

EK(T) = h(e)

Eg(T)
for all &. Frequently the family of densities for T has the property

of completeness, which says that if

£ K(t) dF (t) =£ d(t)dF. ()
T T

"for all ¢, then K(t) is»esse;Zially the same function as g(t). In this
event g(T) is éctually an unbiased estimate of h(¢) with minimim variance.

Thus, although maximum likelihood estimates are known to be consist-

ent, asymptoticélly efficient, and asyaptotically normal, there are usu-
aliy other estimates tﬁat have these properties and which would then
appear to serve just as well for large samples (they might even be bet-
ter for small samples). Such estimates are called best.asymptotically '
normal, or BAN, and can be obtained in various ways.

One class of BAN estimates consists of certain "Minimum Chi-square' .
estimates, defined as follows: Consider a sample xl,--—, xn, from a
vector valued population X with mean vector u(4) and covariance matrix'
M(%), & being the parameter to be estimated (it could be multidimensional).
The quadratic‘expression

X =% & - uen! M@ T™ (X - u(e))
is minimized as a function of ¢ for given Xyy====y X . The minimizing
value ¢ (X,, ---,X ) is called minimum Chi-square estimate of ¢. It is

known to be BAN when X has a distribution belonging to the exponential

. PPN DR U WS I Uy SO SR DT ST S SR
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’ family, Various modifications of the minimum Chi-square method also

yield BAN estimates.
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I111. Robust Procedures

General

A mathematical model is basically based upon a set of assumptions.
These assumptions are not supposed to be exactly true - they are math-
ematically convenient fationalizations of an often fuzzy knowledge'or
belief. These rationalizations or simplifications are vital, and one
Jjustifies their use by aépealing to a végue continuity or stability
ﬁrinciple. This principle states that "A minor error in the mathemati-
cal model should cause only a small error in.the final conclusions.

A statistical inference modél.being a branch of the mathematical
" model should be consistent with the stated principle for a mathematical
model. In the simplest cases there are implicit and explicit assump-
tions about randomness and independence, about distributional models,
perhaps priér distributions for some unknown parameters and so 6n.

During the last decade a 'robust' procedures have been introduced
to solve the conflict between the model aséumptions and the real system

being studies to get insensitivity to small deviations.from assumptions.

Basically, we consider the distributional robustness which means that the

true underlying distribution deviates slightly from the assumed model
(usually the Gaussian law).

As an example for that Tukey (Ref: 78 ) introduced a case of a
contaminated normal distribution with contamination factor ¢ from two
normal distributions N(u,az) and N(p,goz). So the observations X; will
be independent, identically distributed with common underlying distribu-

tion F(x) where:

F(x) = (1 - ¢) o (BY) 4+ ¢ o (FE

11
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where

o(x) = —r

x _.2
fe_y 2 dy is N(0,1)
2n -

Two measures of scatter are the mean absolute deviation

dn = £ 5 jx, -X|
n 1

and the mean square deviation. v
1 212v%
s, =5z (x, - %7

These two measures indicate different characteristics of the error

distribution. The performance of these two measures is summarized by
Huber (Ref:46 ) according to their asymptotically relative efficiency
(ARE) of S, relative to dn versus the contamination factor given in the

following table.

_ Var (Sn)l(E (s‘n)2

ARE-Le) = Lt Yar () (z @7

n+o

€ ARE (¢)
0 0.876
0.001 0.948 \
© 0.002 1.016
0.005 1.198
0.01 1.439
0.02 1.752
0.05 2.035
0.10 1.903
0.15 1.689
0.25 1.371
0.5 1.017
1.0 0.876

12
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From this Huber concluded that:

1. The above does not imply that we advocate the use of the mean
absolute deQiation (There are still better e¢stimates of scale).

2. The contaminating observations could be considered as outliers
and on treating them one can gct a better<estimate of the mean square
error. |

Till this point it seems reasonably to clear the data by rejecting
the outliers and then using classical estimation and testing procedures

for the remainder one can end with a better estiﬁating model. In reality

‘this approach faces three basic pitfalls in application:

1) It is difficult to identify the real outliers unless one uses a
robus estimating model (case mulfiple linear regression).

2) Even if the original set of observations consists of normal with
some gross erros, the cleaned data will not be normal, and the situation
ié even worse with a non-normal distribution.

3) As an empirical fact the best rejection procedure do not quite
reach the performance of the best robust procedure. Because robust prd—
cedures make a smooth transition between full acceptance and full rejec-
tion of an observation.

Thus a robust procedure should have the following features:

1) It should have a reasonably good (optimal or near optimalj)
efficiency at the assumed model.

2) Small deviations from the model assumptions should affect the
model performance only slightly.

3) Relatively larger deviations ﬂyom the model should not completef

ly spoil the behavior of the model.

13




Basic Types of Robust Estimators

The basic types of robust estimators are

1) M-Estimator

“ (The maximum likelihood tpes estimates)

. 2} L-Estimaotr

b : (The linear combinations of order statistic estimator).
3) R-Estimator

h (The estimator derived from r and k tests) *

o 1. The M-Estimator

This kind of estimates is the most flexible one, and it generalizes
straight forwardly to multiparameter problems, even though ( or, perhaps
because) it is not automatically scale invariant and has to be supple-

mented for practical applications by an auxiliary estimate of scale.

Definition: Any estimate T, defined by a minimization problem of the
form
o (xi,Tn) = min

or by an implicit equation

LA e Nl
-, oo e
v POV Pl

)
5 Ige® (X T) =0
N i.e.
r.—‘- —
- . __3 . et d . .
= Where ¥ (X,,T ) = e p(X;,T ) is called an M-estimate. (This estimate
"i is the orginary M.L.E. if
o
!
- p (X;6) = -logf (X;4)
¢

In the linear model we have

L gl a8
Bl TR Rl
. Ol it s
) Al R R

y=X8 +¢

and we are interested in the expected value of the response

P
AR
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E(X B + €)

E (y)

E(X 8)+ E(e)

XE(B) + E (¢)

So in case of E(e) = 0, we get

E(y) = XE(8)

i.e. we basically will be interested in the location parameter. Thus
assuming
6 (X, - T)

z c(xi - Tn)

P (Xi - ?n)’ then

min

or

]
o

'3 'I’(Xi - Tn)

Assuming

.
-
o
e
-y

N
. ;‘ B
Y
-4
._". N
-

F_ H

then

K
[h

r 2l

B P i kb ’
X (RN DA
-
=

i T - & XiWi
;:j‘ n ST
fi Where the weights are dependent on the sample.
p - 4
:!! For the functional form of
i' e (xi; Tn) =0

ey e
WIS

i it is not possible to generally define T(F) to be a value of t which

‘minimizes
fp (X;t) F(dx)
For example the median corresponds to

p (X3t) = |y-t| while

Q ﬁ'x—t [F(dy) = »
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identically in t unless F has a finite first absolute moment. A simple
solution to that is obtained by replacing p(xit) by p(xgt)— p(Xito)
for some fixed to i.e. in case of the median minimize
Jux-tl-ix]) F (ax)
In a similar way the functional form of w(xi,t)'is
Sv e <o,
‘This form of w(x,f) does‘not suffer from_the previous difficulty, but

it might have more solutions corresponding to local minima.

_Influence Function of M-Estimates

The influence function describes the effect of adding one more
observation with value'x to a very large-sample on the value of an
estimate or test statisticAT(Fn) where F_ is the empirical distribution
function.

In case of M-Estimates the influence function was found to be pro-

portional to y and given as
v(XyT(F))

'TC(KQF,T) =

-1G3 v (X;T(F) F(dx)

. and in case if y(X;0) = y(x - 0) we obtain

(X - T(F))
fq,‘[x - T(F))F(dx)

Ic(x F,T) =

2. The L-Estimates

Consider a statistic that is a linear combination of order statistics,
or more generally, of some function h of them:

n

Tn = i:1 ani h(X(i))

We assume that the weights are generated by a (signed) measure M on (u,1)

interval:

16
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(This choice of the weights preserves the total mass, Eani =M{(0,1)},
and symmetry of the coefficients, ifMis symmetric about t = %)'

Then T, = T(Fn) derives from the f‘unqtional T(F) =fh (F_l(s)) M (ds).
and this gives exact equality T, = T(Fn) if the integral is regularized
af its discontinuity points and will be equal to

h(Fs - 0) +3h(F' (s+0)),
where the inverse of any distribution function F is defined in the usual
'ﬁay as

Fl(s) = inf {x |F(x) > s} 0<s<1

Influence Function of L-Estimates

In a similar way like that for the M-Estimate we can find the

(!r influence function of Ts where Ts = Fz}(s)

s-1 , for X<F—1(s)

1C(X;F,Ts) —_—
f(?r (s))

= for X>F-1(s)

e(r L(s))

It is worthwhile to note here that the influence function has a value
only if F has a non-zero finite derivative f at F—l(s).
Using the chain rule for differentiation, the influence function of
h(Ts) is
c(x,F,h(T,)) = IC(XF,T ) h'(Ts)
and thus the influence function of the estimator T itself will be

[C(X?F,T) =J.IC(X)F,h(TS)) M (ds)

17
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3. R-Estimates

R estimation is a procedure based on ranks. To illustrate the
general procedure, consider replacing one factor in the least squares

objective function { 2 (Yi - X, B)z) by its rank: Thus if R, is the
i=1

] n [}
rank of Yi - Xi 8, then we wish to minimize g (Yi - xi B)Ri (Ref 1:894)

i=1
Now consider a two sample rank test for shift: let xl, —---,xm and
Yl’ _— Yn be two independent samples from tne distributions F(x) and

G(x) = F(X -A), respectively merge the two samples into one of size
m + n and let R, be the rank of X, in the combined sample. Let a; = a(i),
1<i<m + n, be some given scores; then base a test of A= 0 against
A>0 on the test statistic
m

£ a(R.)
i=1 1

S =
m,n

=N

Usually, we assume that the scores a; are generated by some function J 2

1 m+ n + 1

In case of the Wilcoxon test, J(t) t - %

as follows

i

Estimates of shift An and of location Tn can be derived from such
rank test:

(1) In the two sample cases, adjust A, such that Sn n= 0 when computed

(2) 1In the one sample case, adjust T, such that S, n® 0 when computed
»

from (xl,--u,xn) and (2Tn - X, ==, 2T - xn). So a mirror image

of the first sample is used as a second sample.

18
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Influence Function of R-estimates

ﬁi o The influence functlon in this case is given as
: or < U = Juecax
X ' fu (x) £(x)dx
L where

U(x) =fJ' 3% [F(x) + 1 - F (21(F) - X))
F(2T(F) - x) dx

For symmetric F this can be simplified, since U(x) = J(F(x)), then
J(F(x))

IC(X,F,T) = - 2
S5 (Fx)))£(x) Pax

-

19
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IV. Multiple Linear Regression

A regression mo&el that involves more than one regressor variable
is called a‘multiple regression model. Here we are going to discuss
the fit and analysis of this model and some lightspot on the measures of

adequacy that are useful in multiple fegression.

Multiple Regression and Least Squares

Suppose that we have a certain response y which may be related to
K'regressor variables by the model
. y = Bo + lel + ezxz + — kak + €

This model is called a.multiple linear regression model with k-regressors.

The parameters Bj' J =0,1,—,k are called the regression coefficients.

This model describes a hyperplane in the k-dimensional space of the

regressor variables xj; The parameter sj.represents the expected change
in the response y per unit change in xj when all the remaining regressor

variables X, (i # j) are held constant. For this reason the parameters

sj, J=1,2,—,k are often called partial regression coefficients.

Multiple linear regression models are often used as approximating
functions. That is, the true functional relationship between y and

xr xz,—-—,xk is unknown, but over certain ranges of the regressor

variables the linear regression model is an adequate approximation.
Models that are more complex in structure may often still be analy-

zed by multiple linear regression techniques. For instance the poly-

nomial model of degree k in one variable which has the form:

k i

z

8. X

y = i

i=0

20
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can be easily modeled by using the substitution

.

‘X; =X, and B, = 8, with X =1
i J i~ 7 o

Thus the model will be the original linear model
Y= B8y v ByXy e B X
Similar transformations could transform the model under consideration
into the general form of the linear model, keeping in mind that the
linearity of the model means linearity in the B coefficients and not in

the independent variables.

So, the basic idea behind multiple linear regression model is to

- find a linear relation that can adequately approximate an unknown rela-

tion between a set of independent variables (k independent variables)

-

and a certain respons y.

Mathematical Model

A scientific model is a representation of some subject.of inquiry
(such as objects, events, processes, systems) and is used basically for
prediction and control. This scientific model is basically divided into

three basic types:

1. Iconic model: which pictorially or vishally represents certain as-

pects of a system (as does a photograph or model airplane).

2. Analogue model: which employes one set of properties to represent

some other set of properties which the system being studied possesses.

3. Mathematical (or symbolic model): which employs symbols to designate

properties of the system under study (by means of a mathematical equation
or set of equations). |

Consequeﬁtly the mathematical model often used by scientists has
three main types:

1. The function model,

T
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2. The control model,

3. The predictive model

1. The functional model

This kind of model exists if the true functional relationship
between a response and the independent variables in a problem is known,
so the response could ﬁe easily uhdersfood, controlled, and predicted.
In practice there are few cases which can be easily modeled by a function-
al model. Even though those models turn to be.very complicated, difficult
to interpret and usually of nonlinear form. In this kind of models, the

the linear regression.procedure do not apply or else linear models can

be used only as approximations to the correct models in itterative '

estimation procedures.

2. The control model

Even if it is known completely, the functional model is not always

suitable for controlling a response variable. For example if the model

contains the ambient temperature as an independent variable in the model,
this temperature is not controllable in the sense that other variables
in the model are controlléble. Thus a model which cont;ins variables
under the control of the experimenter is essential for control of a
response.

A useful control model can sometimes be constructed by multiple
regression techniques, but they should be used carefully because they

are very dangerous if improperly used or interpreted.

3. The predictive model

.When the functional model is very complex and when the ability to
obtain independent estimates of the effects of the control variables is
limited, one can often obtain a linear predictive model which, though

it may be some senses unrealistic, at least reproduces the main features

22

. . . L Lt . . - - [ - - - PPN L PRI T S
. e Ama s . Y




At e A O <N L PN T

of the behavior of the response under study. This type of model is very
useful and under certain conditions can lead to real insight into the
précess orbthe system under study. It is in the construction of this
type of predictive model that multiple regression techniques have their
greatest contribution to make. These problems are usually referred to -
as "problems with messy‘data". That ié, data in which much intercorrela-
tion exists. The predictive model is not necessarily functional and

need not be useful for control purposes. This; of course, does not make

it useless. If nothing else, it can and does provide guidelines for
further experimentation, it pinpoints important variables, and it is a

very useful variable screening device.

Non-Normal Error Distribution

1. Consequences of Non-normal Disturbances

Here I'll discuss the violation of the normality assumption of the
. error term in the regression model:
y=X8+c¢

The discussion will be made in two phases, according if the variance

of the error has a finite or infinite variance.

a. Finite Variance Case

In this case the basic definitions and assumptions of the model are
exactly the same i.e.

1) Y is called the response, B is the vector of coefficient, x is
the independent variables matrix, and ¢ is the error term.

2) X is nonstochastic of rank (P)

3) The Lt-N-lx\x is a finite nonsingular matrix, and

N+»o
4) The random vector ¢ is such that
E (¢) = 0 and

E (¢ &) = o°I, ¢° is finite.

23




Furthermore if € is normally distributed

1) The L.S. estimator b = (x'x)—l x'y is unbiased minimum variance
among the class of unbiased estimators, assymptotically efficient and
consistent.

2) The variance estimator

- 32 = (y - xb). (y - xb)/(N-P) is best quadratic unbiased, i.e.

it has minimum variance of all estimators of 02 that are unbiased and
quédratic in y, in addition it is asymptotically efficient and consistent.

3) basnormally,

2

(N-P) 82/02~X (N-P)

and théy are independent
4) The F-test (for Rg=r) and t-test (for the individual coefficients)
are valid in finite samples.
. On the other hand if ¢ is not normally distributed, we shall have:
@!- 1) b is unbiased minimum variance among the class of linear un-
biased estimators, and consistent.
2) &2 is unbiased and consistent.

3) b and 82 are no longer efficient or asymptotically efficient.

If the form of error distribution is known, we can use the likelihood

SAdn A dun

@

function of y to estimate g and 02. In this case the estimator for g

ij. ,
P
S@

will be nonlinear in general and, under appropriate regularity conditions

E: 8, 32 will be asymptotically efficient. Otherwise it is better to use
Ei nonlinear robust estimators.

;ié 4) b will not be normal and (N-P) 82/02 also will not be xz. This
;:? means that the F- andrt-test for g are not necessarily valid in finite
i?i ‘samples.

e

Ej b. Infinite Variance Case

-y

In this case the error distribution has an infinite variance. As

an example for this case take the Pareto distribution

24
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f (¢) = Cle - eo) ,C, € ,a are constants

o
For a> 2 the variance does not exist.

Due to the fact that infinite variance distribution has "thickfails",
so outliers will frequently occur. As an implementation of these out-
liers the L.s technique will no longer lead to sensitive estimation of g
i.e. 8 will considerably vary in repeated samples; Also, it will be
iméossible to get a meaningful estimate for 02 and g will no longer have
the minimum variance property which in addition means that F- and t-

‘test will be misleading.

Malinvaud (Ret? 58:308) mentioned that, in practice, one can assume
that the error distribution is bounded and this will lead to a finite
variance. However this will not solve the problem and in case of rela-

2

fively large number of outliers o~ will be unstable in repeated samples

and the estimates will behave as if the variance is infinite.

The Double Exponential.and.L1 Technique to Estimate g Coefficients

To demonstrate why it may be desirable to use an alternative to
least square when the oBservations are double exponential, consider
the simple linear model

Vi = Bo *8;X; + €5y i=1.2,7"n

Where the error terms are ‘independent random variables that follow the
double exponential distribution.

P(ci) = J; e-lci'/o

2 y = <ei<c

‘The double exponential distribution is more pointed in the middle

than the normal and tails go to zero as |ei| goes to infinity. How-

ever, since the density function goes to zero as 3'%.' goes to zero,
2

and the normal density function goes to zero as e °i goes to zero, so

the double exponential distribution has heavier tails than the normal.
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Here, we shall use the method of maximum likelihood to estimate 8,

and 6 The likelihood function is

x
n
1 -le. |
L(Bo’81) = 7 5= e i /o
i=1
n
N
1 iz1 leilyg
= n e
(20)

n
So to maximize L(Bo,sl) is the same as maximizing the exponent - iglfivo

I n :
or minimizing iflleil, the sum of the absolute errors. Knowing that the

'method of maximum likelihood appliéd to the regression model with normal

errors leads to the least squares criterion. Thus the assumption of an
error distribution with heavier tails than the normal implies that the
method of least squares is no longer an optimal estimation technique.
However the absolute error criterion would weight outliers far less than
would ieast squafes ( éi is much greater than lg | in case of outliers).
Minimizing the sum of the absolute errors is often called the L _-norm

1

regression problem. The least squares is the L,-norm regressing problem.

2

The L, -norm regression problem can be formulated as & linear pro-
gramming (LP) problem.

Now let Xia,i =1,2, === ,n, and j = 1,2, ——— ,K denote the set
of n observational measurements on k independent variables, and Yo
i =1, ——- ,n, denote the associated measurement on the depevdent var-
iable (response). The Ly technique wishes to find the regression co-
efficient Ej that:

ﬂinimize %,l g xij §j - ¥l

Chranes, Cooper and Fergusdn (Ref 16 ) introduced a reduction which can
transform the problem into

Minimize

Subject to

ot e e e T e e e T ‘. ' o L B . ~ : PP Y
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§j is unrestricted,

€130 €25 2 0

Where €43 is the vertical deviation above the fitted line and €04 is

the vertical deviation below the fitted line for ith observation. Thus

€3; * €54 will be the absolute deviation between the fit 3 xij 60 and
Y- By the nature of the linear programming model, Eli and €93 cannot

‘both be strictly positive in an optimal solution. So, the problem is

formulated as L.P problem of the form:

Minimize 0121 4 —— Ck Zk
subject to
| Z1alz+--+zkazk{3dm ifﬁ.eNl
= dz if % ¢ N,
and
7, 5. >0Vhe M
l Unrestricted ¥ h ¢ M2
where
M, , M, is a partitioning of the linear relations (mutually exclusive and

1 2

completely exhaustive partitioning) and similarly N N, partions for

1,
the set of the variables.

The solution of the model in our case will be

Xg=y

"Where g is the vector (80’31’-~°’8ﬁ)

It worths here to mention that if the number of observations is
large enough, the present model will be somewhat computationally difficult
and it will be better to use the dual problem for determining é.
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The dual model is still large since it contains k + 2n relations.

To reduce it, let
f. =D, +1 i=1,2,—--,n
i i
and the dual model will be equivalent to

Maximize °© y.€. - L Y.

iJiti 174
Subject to )
_ z le fi < le J e M1
{ =2 xij Je M2 )
0<f <2 i=1,2,--—,n

Which will give a model with k linear relations and n non~-negative bound-
ed variables. This final model could be solved quite rapidly for k
(<10) by simplex algorithm for bounded variables problems. On solving

this model we can determine the values for ﬁ.

-

The Uniform Dist. and Minimax Criterian

Again we shall consider that the error term is distributed uniform-
'ally with mean equal to zero and standard deviation equal to unity i.e.
Uk'\’Sa \ﬁ;,). Now consider also the case of a simple linear model

1

yi =B8_ + 81 Xi + ei y 1 =1,2,-—,n

0
where
'V €~ U (-\JEG ,\f;; ), then
£(e;) = —2 (x (c,)
2o (-1435»@))
where
I (Ei) is the indicaﬁor function.

(~-4/30, V3o

The maximum likelihood function as function of the coefficients
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1 n n
3 i=1 1

'o‘ Minimize{ maximum [Z X 8

—y‘

(-43s, \3o)

. This function will achieve its maximum when the difference between the
first and last order statistic will be minimum i.e. the criterion for

obtaining a maximum likelihood estimators for BO and 81 will be by mini-

mizing the difference (e(n) - e(l)) in other words by minimizing the

maximum difference of ¢, (in absolute value) or equivalenély will be to
Minimize {maximum |ei|}

or in a general multiple linear model will be

_yh
jij g

Paralleling Kelley transformed thls problem intuv an L.P model:

» 8> 0

- N\

i ﬁ 8, i= 1,2,——,n

WHere § is the minimized value .of the maximum absol-

Using the same approach as in the case

of minimizing the sum of absolute deviation briefly discussed in the

- double exponential case, the model formulation will be:
; Minimize 3§
subject to
: . - g ij8j*82-y;,i=12--,n
. g a ——
q 1Jsj + 8> y1 1 =1,2, s

e e s -

[roie e T T N T
.
Lo .
:? BO, 81 is given as .
T L(8_.8,) = o 1 (I(ei) )
.. =
3o X (e, VB0)
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and the dual Formulation will be

Maximize - E Y a,. + f ¥ d2i
subject to Vi
.- <0 €
- o _Eyx .4.+Lx 4. (= !
’r’_u' . . i 1J 11 1 13 21
=0 V'J‘ € M2

rd,. +rd,. <1
. 11 . 21 -
1 i

dgg» By 20
This dual model is a regular L.P problem ir k + 1 relations and could
be solved by a standard simplex algorithm. If d1i (dzi) is positive in
the optimal solution of the dual problem, then the maximum deviation
(!F occurs for the ith point and this point will lie above (below) the fitted
line. Thus the solution of this L.P model will give the value of 8 as

the estimated value of 8 in our multiple linear regression model.
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V. Results

In this part of my study I'm going to summarize the research done
to find some technique that could handle the model of 27 observatioﬁ in
11 independent variables.

The model chosen was obtained from Multiple Listing, Vol. 87 for
area 12 (Erie, PA). To search for a technique tﬁat will handle such
tyﬁes of multiple linear regression, it was necessary to find some real

hyperplane (fit) to take as reference for how good the assumed technique

'is. 1In order to do that a least squares regression was performed for the

observed Y and X. The coefficient vector 81 from this model (L.S.) was
multiplied by the X matrix after being augmented by a vector of 1's to

give vector Y_ which was considered as a real value of Y which gives

t

an exact fit
Yt = 81X

The values of the matrix X and the vector 81 are shown in Table I.

Description of Methods .

The basic idea that was used at the very beginning of the study
was to use the Q - statistic introduced by Hogg (Ref 40) and defined as:
Q = [U(.05) - L(.05)1/[U(.5) - L(.5)]
where U (8) is the average of the largest ng order statistics (fractional
items are used if ng is not an integer) and where L (g) has a similar
definition using the smallest items. The Q statistic was basically used

as a discriminator for the error distribution tail length. The reason

for choosing Q to be used as a discriminator was due to its convergence

properties which are much better than those of the Kurtosis, since Q is

a ratio of two linear functions of order statistic. 1In addition it is
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easy to see some similarity between Q and the following measure of tail
length of the distribution function f:

[F-l(.975) - F_l(.025)]/[F-1).75) - F-l(.25)]

The next step was to choose some value for the Q statistic upon
which it will be possible to determine the tail length of the error
distribution. As a matter of fact the basic idea was to come up with
a comparative study between the three known régression techniques
discussed earlier: least squares (Lz), Minimization of the absolute
deviation (Ll)’ and Minimization of the maxiﬁum error (LQ). As it was
pointed out these three techniqués will give maximum likelihood estimators
for normal, double eprnential and uniform error distributions. Thus
these estimators will be of desirable properties expressing the unknown
relation. To do that a sef of random deviates was generated from the

three distributions and added to Y,  in succession to give a new value of

t
Y which is considered as the observed value for Yt i.e.,

Y=Yt+€

Trying different values for Q statistic to get reasonable bounds
(QL. QU) to discriminate the tail length of the distribution, it turns
out to use QL = 2.21 and QU = 2.81 i.e., if Q < 2.21 then we can say
that the distribution is gniform, if 2.21<Q<2.81 the distribution is
normal, while if Q > 2.81 the distribution will be double exponential.
The number of times these bounds will discriminate the distribution for
the known three underlying ones and for monte carl of size 1000 is as

follows:
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1. For Uniform: 872 times uniform
: 127 times normal
1 time D.E.

2. For Normal: 135 uniform
619 normal
246 D.E.
3. For D.E.: 17 uniform
) 229 normal
- 754 D.E. .

As a start for knowing the distribution of the residuals through
the use of the Q-statistic, a linear least squares fit was performed for
each of 1000 different cases of added error vector from the three
considered distributions. Addition of an outlier to one of the observa-
tions at multiple values of standard deviations is also considered during
the start of the search. The results from this step is shown in Table
A-1 for the number of times Q will discriminate each of the residuals
distriubtion when the underlying distribution is known. While Table B-1
exhibits the average error sum of squares which is defined as:

1000

ESSav = ) (Yti

i=1

- Yi)2/1000

for the different cases discussed above. The steady increase in the
valdes of ESSav with the outlier location with respect to the real line
prevail the effect of the so called leverage point effect on the fit

which can be demonstrated by the following graph:

y

[

Y x

(1)
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Using the residuals from L.S. and making a decision on using L, Ly, or

L1 according to the Q values (QL = 2.21, Q; = 2.81) is shown in Table

B-2. It is clear from this table that ESSav is still steadily incréasing
since the Q statistic is discriminating the residual most of the times
(Table A-1) as normal due to the previously mentioned effect by leverage

points. So it seemed to be a better notion to use L, instead of using

L The way how Q discriminates the distribution for this case is

¢
displayed in Table A-2 and ESSav for L1 is in Table B-3. Using the

1 and with two limits again for Q the decision was

taken for the choice between L, L, or Ll' Table B-4 shows ESSav

2
for this case. It seemed to be a reasonable idea to use only one limit
for @ to discriminate between thick tail (D.E.) and thin tail (uniform
and normal) distriubutions directly. The resulting ESS,, is shown in
Table B-5 which improves the values of ESSav.

The previous approaches for taking the problem led to the notion
of using oneof the robust iterative techniques fof handling leverage
points and as a result will give what could be called as robust Q that
will give a better discrimination for the distribution without being
effected by the outliers. As starting step for this approach Huber's
function defined by:

z if |2] < 2

w(z) = {
2 sign (2) 1z] > 2

and calculating weight matrix

) A [ Kol
W, = w[(yi - xiso)ls] if Y, # X8

A
(\ri - xieo)ls
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which will give the coefficient vector as
~ ] -1 []
B = (XWX) " XW Y
This Huber's function has an influence function which will get rid of

the effect of outlier by weighting them with constant weights. The

influence function for this case is as hown in the following figure.
vis)

-t 0 t

-t

" The iterative technique for robust regression needs an initial value to

start iterations with. 1In this context a comparison was done between
using L.S. or L, as initial estimation. The ESSav for these twd'caseé
are shown in Table B-5 and Table B-6 respectively. While Table A-3

aﬁd Table A-4 show thevnumber of times-Q discriminates each distribution.
In this case only two iterations were used. Using the residuals from
Huber, ESSav is calculated again and displayed in Tablg B-7. Till this
point an improvement in the values for ESSav for outliers at more than
100 s.D. is achieved over using the robust technique alone but still
very high value of ESSav. Trying some other robust techniques we ended

with using Hampel function defined as:

¥(z) =z » 12] < .7
*
= 1.7 sign (2) y 1.7< 2] < 3.4
= 1.7 sign (z) (8.5 - [z])
£ 51 121) 5.4 <) < 8.5
=0 _ » |Z] > 8.5
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~ which has influence function as shown in the following figure

vis)

- -b -a 0o b ¢
—a

The ESSav from Hampel with L.S. and L1 as initial estimation is
shown in Table B-8 and Table B-9 respectively. In TaBle B-10 the
resulting ESS_, from using Hampel's residual is shown.

Cbming to this point we started to search for a different approach

to handle our problem. This search basically took 3-phases. Each phase

is based on using the residual themselves as our tool to make the decision:

a. Phase I:

Using the residual from L, and testing if its greater than 3 S.D.

1
then use L, technique, if not use L, (least squares) Table B-11 shows

ESS__ from this phase.
av

r" PN
P R}
AR R
o I

b. Phase II:

In this phase the residual from Hampel iterative technique was used

MM EALAL)

G F‘Fﬁfﬁ?}'ﬁJffT{W3'"ﬁﬁﬁﬁﬂfv' aON
e R I A AR Y TGS RIRE Y YRR

and choice of technique was done as in Phase I. Table B-12 shows the

resulting ESSav from this phase.

c. Phase III:

This is really a different approach whirh gives the nearest fit to
the real line throughout our study. The idea is to perform an initial
éit and by replacement of all points that are more than 3 S.D. apart

from this initial fit back to the initial line. Then by redoing the fit

36
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a lower ESS_ could be easily obtained. Table B-13 -shows the resulting

ESS__ from thise phase.
av

Conclusions

1‘

Presence of outlier's mode discrimination of distribution outliers.
(Tables A-1 - A-4) difficult.

With no outlier's Least Squares gave the best fit.

Iterating Robust Estimators resulted in no improvement.

The Hampel Robust Estimator did not provide outlier protection.

The technique of detecting outlier and using L1 if it is greater
than 3D and least squares otherwise was the best method of handling

the outliers without modifying the data (B-12).

The method of mapping the outlier back onto the regression line if

residual is greater than 3SD and using L1 gave the best fit using
all data points.

Alternatively the best fit is obtained by rejecting the points whose
residuals are greater than 35D and repeating the L.S. fit. See O

line of B-1.
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Table 1
The values of independent variables and the calculated_B coefficient

used to generate the real line.

i S e S S e B s W - P
4.9176 1.0 3.4720 0.9980 1.0 7 4 42 3 1 0
5.0208 1.0 3.5310 1.5000 2.0 7 4 62 1 1 (]
4,5429 2.0 2.2750 1.1750 1.0 6 3 40 2 1 (0]
4.5573 1.0 4.0500 1.2320 1.0 6 3 54 4 1 (0]
5.0597 1.0 4.4550 1.1210 1.0 6 3 42 3 1 ()
3.8910 1.0 4.4550 0.9880 1.0 6 3 56 2 1 0
5.8980 1.0 5.8500 1.2400 1.0 7 3 51 2 1 1
5.6039 1.0 9.5200 1.5010 0.0 6 3 32 1 1 0
15.4202 2.5 9.800 3.420 2.0 10 5 42 2 1 1
14,4598 2.5 12.800 3.0000 2.0 9 5 14 4 1 1
5.8282 1.0 6.4350 1.2250 2.0 6 ] 32 1 1 0
5.3003 1.0 4.9883 1.5520 1.0 6 3 30 1 2 0
6.2712 1.0 5.5200 0.9750 1.0 6 2 30 1 2 0
5.9592 1.0 6.6660 1.1210 2.0 6 3 32 2 1 o]
X = 5.0500 1.0 5.0000 1.0200 0.0 5 2 46 4 4 1
- 8.2464 1.5 5.1500 1.6640 2.0 8 4 50 4 1 0
6.6969 1.5 6.9020 1.4880 1.5 7 3 22 1 1 1
7.7841 1.5 7.1020 1.3760 1.0 6 3 17 2 1 4]
(!P 9.0384 1.0 7.8000 1.5000 1.5 7 3 23 3 3 (4]
5.9894 1.0 5.5200 1.2560 2.0 6 3 40 4 1 1
7.5422 1.5 4.0000 1.6900 1.0 6 3 22 1 1 0
8.7951 1.5 9.8900 1.8200 2.0 8 4 50 1 1 1
6.0931 1.5 6.7265 1.6520 1.0 6 3 44 4 1 0
8.3607 1.5 9.1500 1.7770 2.0 8 4 48 1 1 1
8.1400 1.0 8.0000 1.5040 2.0 7 3 3 1 3 0
|5 9.1416 1.5 7.3262 1.8310 1.5 8 4 31 4 1 0
ki 12.000 1.5 5.0000 1.2000 2.0 6 3 30 3 1 1
t" » ~
0 The g coefficient used as real fit
N4
?! 3.2621860
-~ .84373136
[ 8.2369984
r- - .25660890
. 14.035590
" B = 1.6223667
y - ~1.0604545
D -.32560404
. ~.074490869
.96740379
- 1.0447037
& 2.6899793
-
-
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Table A-1

¢

Number Q discriminates the tail length for uniform, normal, and double

0

0 T
f oo
H’"’.. o
i P
A

AT YT

exponential error distributions after performing least squares fit.

s

D

AN R e 4 T

s v s ey D) .
A PR S et
IR L

T e,

Underlying Dist.

Uniform Normal D.E.
NS.D UR N D.E UR N D.E UR N D.E
. 0 222 633 145 126 596 278 61 450 489
) 1 » 231 623 146 131 593 276 79 435 486
G 3 247 600 153 151 ' 584 265 98 458 444
6 283 584 133 206 608 186 162 527 311
9 319 578 103 268 606 126 234 574 192
100 8 992 - "0 12 988 0 9 991 0
= -
: 1000 0 1000 0 0 1000 0 0 1000 0
=
L 10000 0 1000 0 0 1000 0 0 1000 0
o
-
&
L
-
',
.
..
.
O
[’T .
= -
L_,“
-
¥
» ’
.! 39




Table A-2

Number of times Q discriminates the tail length for uniform, normal and

double exponential error distribution after performing L.

Underlying Dist.
Uniform Normal D.E
NS.D UR N D.E UR N D.E UR N D.E
0 .} 246 595 159 136 550 314 64 446 490
ﬁ- 1 218 554 228 115 506 379 64 437 - 499
‘3 63 327 ' 610 27 ' 252 721 10 139 851
- 6 23 94 883 14 88 89¢e 3 73 924
- 9 22 93 | 885 15 86 | 899 3 71 | 926
; 100 22 93 885 15 86 899 3 70 927
B 1000 | 22 | 93 | 885 15 | 86 | 899 3| 70 | 927
e
: 10000 22 93 885 15 86 899 3 70 927
.‘.‘
P
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g
;;s . .‘;'
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Table A-3

Number of times Q discriminates the tail length for uniform, normal
and double exponential error distribution after performing Huber robust

technique with L.S as initial estimation.

il : Underlying Dist. - -
Uniform Normal D.E
. NS.D UR N D.E UR N D.E ‘UR N D.E
0 217 535 248 122 476 402 58 320 622
1 223 515 262 127 461 412 75 299 626
VS 239 511 250 147 470 383 98 338 564
6 274 503 223 202 500 298 160 414 426
9 309 510 181 258 515 227 222 479 299
100 3 753 244 10 722 268 4 723 273
1000 0 671 329 0 681 319 0 656 344
10000 0 867 133 0 869 131 0 888 112
L'
@
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r
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Table A-4

Number of times Q discriminates the tail length for uniform, normal,

and double exponential error distribution after performing Huber robust

technique with L1 as initial estimation using only one limit Q = 2.81.

Underlying Dist.
Uniform Normal D.E

NS.D N D.E N D.E N D.E

0 - 752 248 598 402 378 622

1 738 262 588 412 374 626
. 3 750 250 617 383 436 564
o 6 777 223 702 298 ° 574 426
u 9 819 181 773 | 227 701 | 299
% 100 756 244 732 | 268 _ 727 | 273
5 1000 671 329 681 319 656 344
§ 10000 867 133 869 131 888 112
hr
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Essav from L.S with an outlier at N*S D (at multiples of standard

Table B-1

deviation) for monte carlo of size 1000.

N UNIFORM NORMAL D.E.
0 12.03 11.69 - 12.0
1 12.96 12.49 12.9
3 19.86 19.1.3 19.73
6 42.8 41.68 42.57
9 80.85 79.34 80.51
16 22.84 22.60 22.78
100 84.15E2 84.02E2 84.12E2
1000 83.95E4 83.94E4 83.95E4
10000 83.94E6 83.94E6 83.94E6




Table B-2

ESSav for using L.S and calculating Q from its residuals and choose
between L L2 or L, according to the value of Q (02 = 2,21, QU = 2.81)

with throwing an outlier at N S.D (multiple of S.D)

N 1 TFORM NORMAL D.E
0 14.86 14.03 13.03
1 15.33 14.92 14.40
3 22.83 22.82 21.95
6 " 46,58 96.63 45.35
9 84.17 81.84 80.15
) 100 63.91E2 61.90E2 61.44E2
1000 56 .34E4 57.17E4 55.67E4
10000 72.78E6 72.94E6 74.54E6
3
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Table B-3

deviation) for monte carlo of size 1000

L, with an outlier at N*S.D (at multiple of standard

UNIFORM

NORMAL

D.E

16

100

1000

10000

20.06

21.23

29.87

52.66

73.02

84.93

85.13

85.13

85.13

17.22

18.35

26.98

48.53

67.68

80.51

§1.09

81.09

81.09

13.73

14.95

23.53

43.86

59.09

70.06

70.65

70.65

70.65
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Table B-4

ESS_  for making decision according to Q statistic calculated from L1

o s catee e e LSRG i et ik Jbetes alndndat i Jhbatune Jiasieh . ASEakE it Rt Sttt Suieciedt ARt AL A o
ST T e e

(1 resg‘éuals and using L., L.S or L. according to Q value (Q2 = 2,21m Q, = 2.81)

' N UNIFORM NORMAL D.E
) 13.49 12.67 13.02
1 14.92 14.89 13.93
3 26.25 '25.08 23.16
6 54.03 50.05 45.34
9 78.53'. 72.72 63.20

100 10.41E2 91.75E1 67.68E1

1000 96 .53E3 84.76E3 61.29E3

10000 84.77E5 96 .53E5 61.27ES

Table B-4 {(cont.)

ESSaV for using L, with Q for making the decision and with only one limit

r for Q (Q = 2.81) and using either L.S or L.
‘ N UNIFORM NORMAL D.E
0 13.73 13.46 12.80
1 14.87 14.49 13.91
3 | 2192 | 21.69 21.56
) 6 45.67 44.40 | aa.s7
9 81.52 79.42 77.11
i 100 63.87E2 61.75E2 61.38E2
1000 56 .34E4 57.17E4 55.07E4
- 10000 71.78E6 72.94E6 74.54E6
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Table B-5
ESS_, from Huber with an outlier at N*S.D (at multiple of standard devia-

tion) for monte carlo of size 1000 using L.S as initial estimation.

1. One Iteration

WP Y'Y 2 5 - - PSP ST U . oy FO '} P

N UNIFORM NORMAL D.E
0 12.28 11.79 11.53
1 13.22 12.60 12.44
3 20.16 19.31 19.43
6 43.27 42.05 42.67
9 81.52 79.91 80.88
100 81.12E2 80.78E2 80.90E2
1000 78 .98E4 78.98E4 78.97E4
10000 78 .75E6 78 . 75E6 78 .75E6
2. Two Iterations
4A N UNIFORM NORMAL D.E
[
% 0 12.37 11.85 11.46
N 1 13.31 12.67 12.37
&l
5 3 20.26 19.40 19.40
P
% 6 43.43 42.18 42.74
-
;‘ 9 81.75 80.14 81.06
o
i 100 78.37E2 77 .82E2 77 .97E2
K 1000 74.48E4 74.49E4 74.47E4
Li 10000 74.78E6 72.94E6 74.54E6
-
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Table B-6

ESSav from Huber with anoutlier at N*S.D (at multiple of standard devia-

tion for monte carlo of size 1000 using L, as initial estimation

1. One Iteration

N UNIFORM NORMAL D.E
0 12.19 11.72 11.52
1 13.13 12.53 12.43
3 20.03 19.22 19.43
6 43.06 41.91 42.57
9 81.26 79.73 80.68
100 81.12E2 80.78E2 80.90E2
1000 78 .98E4 78.93E4 78.97E4
_ 10000 78.75E6 78.75E6 78.75E6
2. Two Iterations
N . UNIFORM NORMAL D.E
0 12.25 11.75 11.44
1 13.19 12.57 12.36
3 20.09 19.27 19.40
6 43.16 42.0 42.64
9 81.42 79.89 80.80
100 78.37E2 77.82E2 77.97E2
1000 74.48E4 74.49E4 74.47 E4
10000 74,02E6 74.03E6 74.03E6
48
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Table B-7
ESSav for the decision accordihg to Q calculated from the residual from
Huber with L.S as initial estimation and using Q = 2.21, Q; = 2.81 i.e.

using L , Ly or L, according to the value of Q (Adaptive)

N UNIFORM NORMAL D.E

0o 14.86 14.03 13.03

‘ 1 15.87 15.04 14.34

3 22.83 22.82 21.95

6 46.58 96.63 45.35

9 84.17 81.84 80.15
100 63.91E2 61.90E2 61.44E2
1000 - 56.34E4 57.17E4 55.07E4
i' 10000 72.78E6 72.94E6 74.54E6
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4' Table B-8

ESSav from Hampel with an outlier at N*S.D (at multiple of standard devia-

:j.: tion) for monte carlo of size 1000 using L.S as initial estimation.
»E;;S 1. One Iteration
tﬁ N UNIFORM NORMAL D.E
i 0 21.50 11.86 11.40
1 13.44 12.68 12.32
3 20.44 19.49 19.41
6 43.68 42.40 42.85
9 82.01 80.29 81.02
16 21.86E1 21.16E1 20.50E1
100 77.78E2 77.49E2 77.53E2
1000 75.52E4 75.56E4 75.56E4
@ 10000 75.30E6 75.39E6 75.39E6
2. Two Iterations
N UNIFORM NORMAL D.E
0 12.68 12.01 11.35
1 13.63 12.84 12.30
- 3. 20.66 19.68 19.46
53 6 44.01 42.70 43.11
4 9 82.53 80.76 81.38
16 20.52E1 19.17E1 17.24E1
100 © 71.52E3 70.97E2 71.02E2
1000 67.70E4 67.61E4 78.60E4
10000 - 67.29E5 67.29E5 67.29ES
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Table B-9
ESS(&lv from Hampel with an outlier at NS.D for monte carlo of size 1000

as initial estimation.

ﬂ using L1

1. One iteration

v
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N UNIFORM NORMAL D.E
0 12.23 11.71 11.30
1 13.16 12.53 12.25
3 20.09 19.30 19.35
6 43.09 41.91 42.42
9 80.91 78.87 79.17
16  21.86E1 21.16E1 20.50E1
10000 75.39E6 75.39E6 75.39E6
2. Two Itérations
N . UNIFORM NORMAL D.E
0 12.31 11.80 11.24
1 13.25 12.61 12.20
3 20.19 19.43 19.41
6 43.19 41.98 42.50
9 80.65 78.06 77.65
16 20.52E1 19.17E1 17.24E1
100 13.57E2 24.45E2 64.17E2
10000 67.29E6 67 .30E6 67.29E6
51




Table B~10

E.Ssav from using L, or L, after making decision according to Q calculated

n from residuals of Hampel (L.S as initial estimation)

. N UNIFORM NORMAL D.E

e 0 14.45 13.85 12.90

: 4
1 | 15.43 14.88 14.02
3 22.78 . 22.25 21.85
6 46 .50 44.94 44.56
9 81.80 79.11 1 75.95
100 30.91E2 28.81E2 | 28.80g2

1000 85.13 81.09 70.65
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Table B-11

ESSav using residual from L and making decision to use L, or L2
according if the residual is greater than 3 S.D or not.
N UNIFORM NORMAL D.E
0 13.49 13.67 13:02
1 14.92 14.89 13.93
3 26.25 25.08 23.16
6 54.03 50.05 45.34
9 78.53 72.72 63.20
100 10.41E2 91.75E1 67.68E1
1000 96 .53E3 84.76E3 61.29E3
10000 96 .53E5 84.77E5 61.27E5
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ESSav from using residual from Hampel to make the decision. If residual

Table

T Y, - % &

B-12

is greater than 3 S.D use L, if not use L.S

N UNIFORM NORMAL D.E

0 12.03 11.69 12400

1 12.96 12.49 12.90

3 19.86 19.11 19.65

6 42.48 41.04 41.45

9 78.59 74.96 71.66

16 17.23E1 15.31E1 12.89E1
100 10.99E1 13.14E1 12.10E1

N
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ESSav from Phase III (rep’ .cement of outliers).

Table

B-13

UNIFORM

NORMAL

D.E

16

100

20.06
21.23
29.87
52.66
73.01
84.93

85.08

17.22

18.35

26.98

48.53

67.66

80.49

81.08

1372

14.95

23.53

43.87

65.32

70.02

70.59
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